Sains Malaysiana 54(12)(2025): 2809-2824
http://doi.org/10.17576/jsm-2025-5412-01
Penentuan
Potensi Air Bawah Tanah Menggunakan Kaedah Keberintangan Geoelektrik dan
Pengutuban Teraruh di Kawasan Terpilih Sekitar Lembangan Sungai Klang
(Determination of Groundwater
Potential Using Geoelectrical Resistivity Method and Induced Polarization in
Selected Areas around the Klang River Basin)
MOHD HARIRI ARIFIN1, AZLAN SHAH NERWAN SHAH2*,
MAISARAH ABD MALEK1,
WAN NIK HAIKAL3, MAZATUL AKMA AROS3,
TUAN RUSLI TUAN MOHAMED3, NURUL AIN CHE ZAKARIA1, NOR SHAHIDAH MOHD NAZER1 & NORSYAFINA ROSLAN1
1Program
Geologi, Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
2Kumpulan
Teknologi Bahan, Bahagian Teknologi Industri, Agensi Nuklear Malaysia, 43000
Kajang, Selangor, Malaysia
3Jabatan
Mineral dan Geosains Malaysia (Selangor/ Wilayah Persekutuan), Tingkat 6 &
7, Bangunan Darul Ehsan, Seksyen 14, 40000 Shah Alam, Selangor
Received: 23 February 2022/Accepted: 19
November 2025
ABSTRAK
Kepesatan pembangunan dan
peningkatan populasi penduduk di Lembangan Sungai Klang menuntut keperluan penerokaan sumber air
alternatif yang lebih terjamin. Kajian ini menilai potensi air bawah tanah di
kawasan batu kapur dan batu metasedimen di sekitar Surau Ad Dinniyah (Batu
Caves), Kg. Malaysia Tambahan (Sungai Besi), Jariah Agro Farm (Shah Alam),
Masjid Raja Al Fisabilillah (Cyberjaya) dan Universiti Malaya Perdana Siswa
(Petaling Jaya) menggunakan gabungan kaedah keberintangan geoelektrik 2D,
pengutuban teraruh (IP) dan korelasi data lubang gerudi. Beberapa garis survei
merentasi Formasi Batu Kapur Kuala Lumpur dan Formasi Bukit Kenny direkodkan
dengan nilai ralat RMS model songsangan antara 19.8% hingga 48.7%. Julat
keberintangan yang diperoleh ialah 0.5–5000 Ωm, manakala kebolehcasan
berjulat 0.5–200 ms. Zon potensi akuifer dikenal pasti pada julat keberintangan
0–200 Ωm dan kebolehcasan 0–50 ms. Hasil korelasi menunjukkan batuan
metasedimen, khususnya batu pasir Formasi Bukit Kenny mempunyai potensi air
bawah tanah yang lebih tinggi berbanding batu kapur, di mana lapisan batu pasir
tepu air yang tebal dan berpori dengan lapisan lempung sebagai penakung
membentuk sistem akuifer yang ideal. Sebaliknya, sistem akuifer batu
kapur–marmar yang tinggi kerintangan hanya menunjukkan zon air setempat yang
dikawal oleh rekahan dan rongga kars. Dapatan ini boleh dijadikan panduan awal
dalam mengenal pasti zon prospek telaga dan menyokong pengurusan air bawah
tanah secara mampan di Lembangan Sungai Klang.
Kata
kunci: Air bawah tanah, keberintangan
geoelektrik, pengutuban teraruh, batu kapur, batu metasedimen, akuifer
ABSTRACT
Rapid development and population
growth in the Klang River Basin demand the exploration of more reliable
alternative water resources. This study evaluates the groundwater potential in
limestone and metasedimentary terrains around Surau Ad Dinniyah (Batu Caves),
Kg. Malaysia Tambahan (Sungai Besi), Jariah Agro Farm (Shah Alam), Masjid Raja
Al Fisabilillah (Cyberjaya) and Universiti Malaya Perdana Siswa (Petaling Jaya)
using a combination of 2D geoelectrical resistivity, induced polarization (IP)
methods and borehole data correlation. Several survey lines were conducted
across the Kuala Lumpur Limestone Formation and the Bukit Kenny Formation, with
inversion RMS errors ranging from 19.8% to 48.7%. The measured resistivity
values range from 0.5–5000 Ωm, while chargeability ranges from 0.5–200 ms.
Potential aquifer zones are identified within resistivity values of 0–200
Ωm and chargeability values of 0–50 ms. The correlation results show that
metasedimentary rocks, particularly the sandstone of the Bukit Kenny Formation,
have higher groundwater potential than limestone, where thick, water-saturated
and porous sandstone layers overlain by clay acting as a confining layer form
an ideal aquifer system. In contrast, the highly resistive limestone–marble
aquifer system only exhibits localized water zones controlled by fractures and
karst cavities. These findings provide an initial guideline for identifying
prospective well sites and support sustainable groundwater management in the
Klang River Basin.
Keywords: Groundwater, geoelectrical resistivity, induced
polarization, limestone, metasedimentary rocks, aquifer
REFERENCES
Abdel Moneim, A.A. 2005. Overview of the geomorphological
and hydrogeological characteristics
of the Eastern Desert of Egypt. Hydrogeology Journal,13: 416–425.
Alao, J.O. & Abubakar, F. 2025. Groundwater exploration,
management strategies and sustainability: Geophysical approaches. Geosystems
and Geoenvironment, 4(3): 100395.
Ford, D.C. & Williams, P. 2007. Karst Hydrogeology and
geomorphology. Chichester: John Wiley.
Goh, B.H. 2000. Pemetaan geomorfologi lembangan labu, negeri
sembilan dengan bantuan fotograf udara. Tesis Sarjana Muda. Selangor:
Universiti Kebangsaan Malaysia.
Kamaraj, P. & Karuppannan, S. 2024. Dataset of
geophysical electrical resistivity and subsurface profiling for natural
resources exploration in a hard rock terrain of Tamil Nadu, India. Data in
Brief, 54, 110311.
Kayode, J.S., Arifin, M.H., Mansor, M.I., Malek, N.N.A,
Musa, R.C., Shahri, S., Izehar, N.H. & Umor, M.R. 2023. Hydrogeophysical
modeling of the groundwater aquifer units under climate variability in parts of
Peninsular Malaysia: A case study of the climate-water nexus approach to
sustainability. Heliyon, 9(3): e13710.
Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O. &
Wilkinson, P.B. 2013. Recent developments in the direct-current geoelectrical
imaging method. Journal of Applied Geophysics 95:135-156.
Madun, A., Tajudin, S.A.A., Sahdan, M.Z., Md Dan, M.F. &
Talib, M.K.A. 2018. Electrical resistivity and induced polarization techniques
for groundwater exploration. International Journal of Integrated Engineering,
10(8): 56-60.
Manda, A.K. & Gross, M.R. 2006. Identifying and
characterizing solution conduits in karst aquifers through geospatial (GIS)
analysis of porosity from borehole imagery: An example from the Biscayne
aquifer, South Florida (USA). Advances in Water Resources, 29: 383–396.
Mbouaki, A.P.M., Cai, Z., Sikanyika, E.W., Mwakipunda, G.C.
& Konan, H.R. 2025. Petrophysical evaluation of a shaly sandstone reservoir
and the effect of clay minerals on reservoir quality: A case study from the
Barremian Mengo Sandstone, Kouilou Basin, Republic of Congo. ACS Omega,
10(10): 10081-10106.
Mukherjee, A., Jha, M.K., Kim, K.-W. & Pacheco, F.A.L.
2024. Groundwater resources: challenges and future opportunities. Scientific
Reports, 14: 28540.
Murugesu, M.P., Vega, B., Ross, M., Kurotori, T., Druhan,
J.L. & Kovscek, A.R. 2024. Coupled transport, reactivity, and mechanics in
fractured shale caprocks. Water Resources Research, 60(1): e2023WR035482.
Nugraha, G.U., Bakti, H., Lubis, R.F., Mulyono, A., Ulfa, Y.
& Sudrajat, Y. 2025. Data driven resistivity zonation integrating inversion
kriging and clustering for subsurface characterization in groundwater
exploration. Discover Water, 5: 62.
Paine, J.G. & Minty, B.R.S. 2005. Airborne
hydrogeophysics. Dlm. Rubin, Y. & Hubbard, S.S. (Pnyt.). Hydrogeophysics.
Springer: Dordrecht.
Raihan, A., Pereira, J.J., Begum, R.A. & Rasiah, R.
2023. The economic impact of water supply disruption from the Selangor River,
Malaysia. Blue-Green Systems, 5(2): 102–120.
Revil, A., Vaudelet, P., Su, Z. & Chen, R. 2022. Induced
polarization as a tool to assess mineral deposits: A review. Minerals, 12(5):
571.
Reynolds, J.M. 1997. An introduction to applied and
environmental geophysics. Chichester: John Wiley and Sons Ltd.
Saad, R., Noordin, M.N.M. & Mohamad, E.T. 2012.
Groundwater detection in alluvium using 2-d electrical resistivity tomography
(ERT). Electronic Journal of Geotechnical Engineering, 17: 369-376.
Samsudin, A.R. 1990. Geofizik: Konsep dan Penggunaan.
Kuala Lumpur: Penerbit Dewan Bahasa dan Pustaka.
Telford, W.M., Geldart, L.P. & Sheriff, R.E. 1990.
Applied Geophysics. Dlm. Resistivity Method. Cambridge University Press, ms.
535–538.
Thomas, B., Vinka, C., Pawan, L. & David, S. 2022.
Sustainable groundwater treatment technologies for underserved rural communities
in emerging economies. Science of The Total Environment, 813: 152633.
Todd, D. & Mays, L. 2005. Groundwater Hydrology, Edisi
ke-3. Hoboken: John Wiley and Sons.
Villholth, K.G. 2006. Groundwater assessment and management:
Implications and opportunities of globalization. Hydrogeology Journal, 14: 330–339.
Wang, L. 2020. Clay stabilization in sandstone reservoirs
and the perspectives for shale reservoirs. Advances in Colloid and Interface
Science, 276: 102087.
Willbourn, E.S. 1922. A general account of the geology of
Malay Peninsula and the surrounding countries, including Burma, the Shan
States, Yunnan, Indo-China, Siam, Sumatra, Java, Borneo and other islands of
the Dutch East. Journal of the Straits Branch of the Royal Asiatic Society,
86: 237-256.
Worthington, S.R.H., Ford, D.C. & Davies, G.J. 2000.
Matrix, fracture and channel components of storage and flow in a Paleozoic
limestone aquifer. Dlm. Sasowsky, I.D. & Wicks, C.M. (Pnyt.). Groundwater
flow and contaminant transport in carbonate aquifers. Rotterdam: A.A. Balkema.
Zerga, B. 2024. Karst topography: Formation, processes,
characteristics, landforms, degradation and restoration: A systematic review. Watershed
Ecology and the Environment, 6: 252–269.
*Corresponding author; email: azlanshah@nm.gov.my