Sains Malaysiana 54(12)(2025): 2809-2824

http://doi.org/10.17576/jsm-2025-5412-01

 

Penentuan Potensi Air Bawah Tanah Menggunakan Kaedah Keberintangan Geoelektrik dan Pengutuban Teraruh di Kawasan Terpilih Sekitar Lembangan Sungai Klang

(Determination of Groundwater Potential Using Geoelectrical Resistivity Method and Induced Polarization in Selected Areas around the Klang River Basin)

 

MOHD HARIRI ARIFIN1, AZLAN SHAH NERWAN SHAH2*, MAISARAH ABD MALEK1,
WAN NIK HAIKAL3, MAZATUL AKMA AROS3, TUAN RUSLI TUAN MOHAMED3, NURUL AIN CHE ZAKARIA1,
NOR SHAHIDAH MOHD NAZER1 & NORSYAFINA ROSLAN1

                        

1Program Geologi, Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

2Kumpulan Teknologi Bahan, Bahagian Teknologi Industri, Agensi Nuklear Malaysia, 43000 Kajang, Selangor, Malaysia

3Jabatan Mineral dan Geosains Malaysia (Selangor/ Wilayah Persekutuan), Tingkat 6 & 7, Bangunan Darul Ehsan, Seksyen 14, 40000 Shah Alam, Selangor

Received: 23 February 2022/Accepted: 19 November 2025

 

ABSTRAK

Kepesatan pembangunan dan peningkatan populasi penduduk di Lembangan Sungai Klang       menuntut keperluan penerokaan sumber air alternatif yang lebih terjamin. Kajian ini menilai potensi air bawah tanah di kawasan batu kapur dan batu metasedimen di sekitar Surau Ad Dinniyah (Batu Caves), Kg. Malaysia Tambahan (Sungai Besi), Jariah Agro Farm (Shah Alam), Masjid Raja Al Fisabilillah (Cyberjaya) dan Universiti Malaya Perdana Siswa (Petaling Jaya) menggunakan gabungan kaedah keberintangan geoelektrik 2D, pengutuban teraruh (IP) dan korelasi data lubang gerudi. Beberapa garis survei merentasi Formasi Batu Kapur Kuala Lumpur dan Formasi Bukit Kenny direkodkan dengan nilai ralat RMS model songsangan antara 19.8% hingga 48.7%. Julat keberintangan yang diperoleh ialah 0.5–5000 Ωm, manakala kebolehcasan berjulat 0.5–200 ms. Zon potensi akuifer dikenal pasti pada julat keberintangan 0–200 Ωm dan kebolehcasan 0–50 ms. Hasil korelasi menunjukkan batuan metasedimen, khususnya batu pasir Formasi Bukit Kenny mempunyai potensi air bawah tanah yang lebih tinggi berbanding batu kapur, di mana lapisan batu pasir tepu air yang tebal dan berpori dengan lapisan lempung sebagai penakung membentuk sistem akuifer yang ideal. Sebaliknya, sistem akuifer batu kapur–marmar yang tinggi kerintangan hanya menunjukkan zon air setempat yang dikawal oleh rekahan dan rongga kars. Dapatan ini boleh dijadikan panduan awal dalam mengenal pasti zon prospek telaga dan menyokong pengurusan air bawah tanah secara mampan di Lembangan Sungai Klang.

Kata kunci: Air bawah tanah, keberintangan geoelektrik, pengutuban teraruh, batu kapur, batu metasedimen, akuifer

 

ABSTRACT

Rapid development and population growth in the Klang River Basin demand the exploration of more reliable alternative water resources. This study evaluates the groundwater potential in limestone and metasedimentary terrains around Surau Ad Dinniyah (Batu Caves), Kg. Malaysia Tambahan (Sungai Besi), Jariah Agro Farm (Shah Alam), Masjid Raja Al Fisabilillah (Cyberjaya) and Universiti Malaya Perdana Siswa (Petaling Jaya) using a combination of 2D geoelectrical resistivity, induced polarization (IP) methods and borehole data correlation. Several survey lines were conducted across the Kuala Lumpur Limestone Formation and the Bukit Kenny Formation, with inversion RMS errors ranging from 19.8% to 48.7%. The measured resistivity values range from 0.5–5000 Ωm, while chargeability ranges from 0.5–200 ms. Potential aquifer zones are identified within resistivity values of 0–200 Ωm and chargeability values of 0–50 ms. The correlation results show that metasedimentary rocks, particularly the sandstone of the Bukit Kenny Formation, have higher groundwater potential than limestone, where thick, water-saturated and porous sandstone layers overlain by clay acting as a confining layer form an ideal aquifer system. In contrast, the highly resistive limestone–marble aquifer system only exhibits localized water zones controlled by fractures and karst cavities. These findings provide an initial guideline for identifying prospective well sites and support sustainable groundwater management in the Klang River Basin.

Keywords: Groundwater, geoelectrical resistivity, induced polarization, limestone, metasedimentary rocks, aquifer

 

REFERENCES

Abdel Moneim, A.A. 2005. Overview of the geomorphological and hydrogeological         characteristics of the Eastern Desert of Egypt. Hydrogeology Journal,13: 416–425.

Alao, J.O. & Abubakar, F. 2025. Groundwater exploration, management strategies and sustainability: Geophysical approaches. Geosystems and Geoenvironment, 4(3): 100395.

Ford, D.C. & Williams, P. 2007. Karst Hydrogeology and geomorphology. Chichester: John Wiley.

Goh, B.H. 2000. Pemetaan geomorfologi lembangan labu, negeri sembilan dengan bantuan fotograf udara. Tesis Sarjana Muda. Selangor: Universiti Kebangsaan Malaysia.

Kamaraj, P. & Karuppannan, S. 2024. Dataset of geophysical electrical resistivity and subsurface profiling for natural resources exploration in a hard rock terrain of Tamil Nadu, India. Data in Brief, 54, 110311.

Kayode, J.S., Arifin, M.H., Mansor, M.I., Malek, N.N.A, Musa, R.C., Shahri, S., Izehar, N.H. & Umor, M.R. 2023. Hydrogeophysical modeling of the groundwater aquifer units under climate variability in parts of Peninsular Malaysia: A case study of the climate-water nexus approach to sustainability. Heliyon, 9(3): e13710.

Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O. & Wilkinson, P.B. 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics 95:135-156.

Madun, A., Tajudin, S.A.A., Sahdan, M.Z., Md Dan, M.F. & Talib, M.K.A. 2018. Electrical resistivity and induced polarization techniques for groundwater exploration. International Journal of Integrated Engineering, 10(8): 56-60.

Manda, A.K. & Gross, M.R. 2006. Identifying and characterizing solution conduits in karst aquifers through geospatial (GIS) analysis of porosity from borehole imagery: An example from the Biscayne aquifer, South Florida (USA). Advances in Water Resources, 29: 383–396.

Mbouaki, A.P.M., Cai, Z., Sikanyika, E.W., Mwakipunda, G.C. & Konan, H.R. 2025. Petrophysical evaluation of a shaly sandstone reservoir and the effect of clay minerals on reservoir quality: A case study from the Barremian Mengo Sandstone, Kouilou Basin, Republic of Congo. ACS Omega, 10(10): 10081-10106.

Mukherjee, A., Jha, M.K., Kim, K.-W. & Pacheco, F.A.L. 2024. Groundwater resources: challenges and future opportunities. Scientific Reports, 14: 28540.

Murugesu, M.P., Vega, B., Ross, M., Kurotori, T., Druhan, J.L. & Kovscek, A.R. 2024. Coupled transport, reactivity, and mechanics in fractured shale caprocks. Water Resources Research, 60(1): e2023WR035482.

Nugraha, G.U., Bakti, H., Lubis, R.F., Mulyono, A., Ulfa, Y. & Sudrajat, Y. 2025. Data driven resistivity zonation integrating inversion kriging and clustering for subsurface characterization in groundwater exploration. Discover Water, 5: 62.

Paine, J.G. & Minty, B.R.S. 2005. Airborne hydrogeophysics. Dlm. Rubin, Y. & Hubbard, S.S. (Pnyt.). Hydrogeophysics. Springer: Dordrecht.

Raihan, A., Pereira, J.J., Begum, R.A. & Rasiah, R. 2023. The economic impact of water supply disruption from the Selangor River, Malaysia. Blue-Green Systems, 5(2): 102–120.

Revil, A., Vaudelet, P., Su, Z. & Chen, R. 2022. Induced polarization as a tool to assess mineral deposits: A review. Minerals, 12(5): 571. 

Reynolds, J.M. 1997. An introduction to applied and environmental geophysics. Chichester: John Wiley and Sons Ltd.

Saad, R., Noordin, M.N.M. & Mohamad, E.T. 2012. Groundwater detection in alluvium using 2-d electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17: 369-376.

Samsudin, A.R. 1990. Geofizik: Konsep dan Penggunaan. Kuala Lumpur: Penerbit Dewan Bahasa dan Pustaka.

Telford, W.M., Geldart, L.P. & Sheriff, R.E. 1990. Applied Geophysics. Dlm. Resistivity Method. Cambridge University Press, ms. 535–538.

Thomas, B., Vinka, C., Pawan, L. & David, S. 2022. Sustainable groundwater treatment technologies for underserved rural communities in emerging economies. Science of The Total Environment, 813: 152633.

Todd, D. & Mays, L. 2005. Groundwater Hydrology, Edisi ke-3. Hoboken: John Wiley and Sons.

Villholth, K.G. 2006. Groundwater assessment and management: Implications and opportunities of globalization. Hydrogeology Journal, 14: 330–339.

Wang, L. 2020. Clay stabilization in sandstone reservoirs and the perspectives for shale reservoirs. Advances in Colloid and Interface Science, 276: 102087.

Willbourn, E.S. 1922. A general account of the geology of Malay Peninsula and the surrounding countries, including Burma, the Shan States, Yunnan, Indo-China, Siam, Sumatra, Java, Borneo and other islands of the Dutch East. Journal of the Straits Branch of the Royal Asiatic Society, 86: 237-256.

Worthington, S.R.H., Ford, D.C. & Davies, G.J. 2000. Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. Dlm. Sasowsky, I.D. & Wicks, C.M. (Pnyt.). Groundwater flow and contaminant transport in carbonate aquifers. Rotterdam: A.A. Balkema.

Zerga, B. 2024. Karst topography: Formation, processes, characteristics, landforms, degradation and restoration: A systematic review. Watershed Ecology and the Environment, 6: 252–269.

 

*Corresponding author; email: azlanshah@nm.gov.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  next